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Fig. 1. SP-GAN not only enables the generation of diverse and realistic shapes as point clouds with fine details (see the two chairs on the left and right) but
also embeds a dense correspondence across the generated shapes, thus facilitating part-wise interpolation between user-selected local parts in the generated
shapes. Note how the left chair’s back (blue part in top arc) and the right chair’s legs (red part in bottom arc) morph in the two sequences.

We present SP-GAN, a new unsupervised sphere-guided generative model
for direct synthesis of 3D shapes in the form of point clouds. Compared
with existing models, SP-GAN is able to synthesize diverse and high-quality
shapes with fine details and promote controllability for part-aware shape
generation and manipulation, yet trainable without any parts annotations.
In SP-GAN, we incorporate a global prior (uniform points on a sphere) to
spatially guide the generative process and attach a local prior (a random
latent code) to each sphere point to provide local details. The key insight in
our design is to disentangle the complex 3D shape generation task into a
global shape modeling and a local structure adjustment, to ease the learning
process and enhance the shape generation quality. Also, our model forms an
implicit dense correspondence between the sphere points and points in every
generated shape, enabling various forms of structure-aware shape manipu-
lations such as part editing, part-wise shape interpolation, and multi-shape
part composition, etc., beyond the existing generative models. Experimental
results, which include both visual and quantitative evaluations, demonstrate
that our model is able to synthesize diverse point clouds with fine details
and less noise, as compared with the state-of-the-art models.
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1 INTRODUCTION
A challenging problem in 3D shape creation is how to build gener-
ative models to synthesize new, diverse, and realistic-looking 3D
shapes, while having structure-aware generation and manipulation.
One solution is to decompose shapes into parts [Mo et al. 2019; Wu
et al. 2020] and learn to compose new shapes according to part-level
relations. With parts correspondence, these approaches can further
enable various forms of structure-aware manipulation; however, the
granularity of the shape generation is part-based and it depends on
the availability and quality of the parts annotations.

Another feasible solution is to design deep generative models to
characterize the shape distribution and learn to directly generate
shapes in an unsupervised manner. Prior researches generate shapes
represented as 3D point clouds, typically by learning to map random
latent code to point clouds, via auto-regressive models [Sun et al.
2020], flow-based models [Kim et al. 2020; Klokov et al. 2020; Yang
et al. 2019], and generative adversarial nets (GAN) [Achlioptas et al.
2018; Hui et al. 2020; Shu et al. 2019]. Though substantial progress
has been made, the problem is still very challenging, due to the di-
verse shape variations and the high complexity in 3D space. Hence,
existing generative models often struggle with the fine details and
tend to produce noisy point samples in the generated shapes. Also,
existing models lack structure controllability for part-aware gener-
ation and manipulation; it is because the learned mapping from a
single latent code merely characterizes the overall shape variation,
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so it is hard to obtain a plausible correspondence between the parts
in generated shapes and the dimensions in latent code, as well as
across different shapes generated by the learned mapping.

This paper presents a new GAN model called SP-GAN, in which
we use a Sphere as Prior to guide the direct generation of 3D shapes
(in the form of point clouds). Our new approach goes beyond gener-
ating diverse and realistic shapes, in which we are able to generate
point clouds with finer details and less noise, as compared with the
state-of-the-arts. Importantly, our design facilitates controllability
in the generative process, since our model implicitly embeds a dense
correspondence between the generated shapes, and training our
model is unsupervised, without requiring any parts annotations. By
this means, we can perform part-aware generation and manipulation
of shapes, as demonstrated by the results shown in Figure 1.

Figure 2 illustrates the key design in SP-GAN. Instead of having a
single latent code as input like the conventional generative models,
we design our generator with two decoupled inputs: (i) a global prior
S, which is a fixed 3D point cloud in the form of a unit sphere, to
provide an isotropic (unbiased) spatial guidance to the generative
process; and (ii) a local prior z, which is a random latent code to
provide local details. We pack these two inputs into a prior latent
matrix by attaching a latent code z to every point in S, as illustrated
in Figure 2. By this means, the generative process starts from a
shared global initialization (e.g., a common ground), yet accommo-
dating the spatial variations, such that every point moves towards
its desired location for forming the shape. A key insight behind our
design is that we formulate the generation task as a transformation
and disentangle the complex 3D shape generation task into (i) a global
shape modeling (e.g., chair) and (ii) a local structure adjustment (e.g.,
chair’s legs). Such a decoupling scheme eases the learning process
and enhances the quality of the generated shapes.
Another important consequence is that our new model facili-

tates structure controllability in the generative process, through
an implicit dense correspondence between the input sphere and the
generated shapes. Metaphorically, the sphere provides a common
working space (like the canvas in painting) for shape generation
and manipulation; painting on a certain area on the sphere naturally
manipulates the corresponding part in different generated shapes.
So, if we modify the latent vectors associated with specific points
on S while keeping others unchanged, we can manipulate local
structures for the associated parts in the shape. Also, since parts
are connected geometrically and semantically with one another,
changing one part may cause slight changes in some other parts
for structural compatibility; see Figure 1 (bottom). Furthermore,
the dense correspondence extends across all the generated shapes
produced from the generator, with S serving as a proxy. Hence,
we can interpolate the latent code of different generated shapes to
morph between shapes in a shape-wise or part-wise fashion. We
shall show various structure-aware shape manipulations in Sec-
tion 5. Further, the experimental evaluations confirm that SP-GAN
is able to generate diverse and high-quality point clouds, compared
with the state-of-the-art generative models.

Fig. 2. An overview of SP-GAN. Its input is a prior latent matrix with (i)
a random latent code z, and (ii) a unit 3D sphere S, which is represented
as N points evenly-distributed on the sphere. In SP-GAN, S provides an
unbiased spatial guidance to the generator for it to learn to synthesize point
cloud P from z with finer details and less noise. Also, SP-GAN implicitly
embeds a dense correspondence between S and P (see their colors above),
thus promoting structure-aware shape generation and manipulation.

2 RELATED WORK
3D shape generation based on deep neural networks has attracted
immense research interest. Broadly speaking, it relates to many
areas in graphics and vision, for example, 3D shape reconstruction
from various forms of input (2D RGB images [Knyaz et al. 2018;
Wu et al. 2017; Zheng et al. 2019], 2.5D depth images [Guo et al.
2017; Li et al. 2017; Waechter et al. 2017; Wu et al. 2015; Yang et al.
2018], and 3D scans [Aberman et al. 2017; Hanocka et al. 2020; Yuan
et al. 2018]), shape transform [Yin et al. 2019, 2018],etc. In this work,
we focus on 3D shape generation, specifically in the context of
generating new and diverse shapes that are not necessarily in the
given shape repository but yet look realistic when compared with
the existing shapes in the repository.
In general, 3D shapes can be generated in a part-conditioned or

unconditioned manner. Part-conditioned means that we employ an
additional dataset with parts labels to train a part-wise variational
autoencoder to encode each predefined (or learned) part into a
latent distribution [Dubrovina et al. 2019; Mo et al. 2019, 2020; Wu
et al. 2020], so that new shapes can be generated by sampling from
the distributions of parts and composing them. On the other hand,
unconditioned means that we directly synthesize 3D shapes from
a random distribution, so the generation process has full freedom
and the generated samples are not limited by the part-annotation
data or any pre-defined structure relation.

Our SP-GAN model is unconditional, so we further review works
on unconditional approaches from now on. With advances in direct
3D point cloud processing using deep neural networks, as inspired
by pioneering works such as [Qi et al. 2017a,b; Wang et al. 2019], etc.,
several new approaches were proposed recently to generate 3D
shapes in the form of point clouds. These methods can be roughly
classified into autoregressive-based, flow-based, and GAN-based.
Autoregressive-based generative approach models the joint 3D

spatial distribution of points in a point cloud. Specifically, Sun et
al. [2020] propose PointGrow to estimate the point coordinate dis-
tributions from the training shapes. During the generative phase,
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points are sampled one-by-one based on the estimated probabil-
ity distributions given the previously-generated points. However,
due to the iterative property intrinsic to autoregressive models, the
model cannot scale well with the size of the point cloud.
Flow-based generative approach learns to model the distribution

of points in a shape mainly by an invertible parameterized transfor-
mation of the points. In the generative phase, the approach samples
points from a given generic prior (e.g., a Gaussian distribution) and
moves them to the target shape using the learned parameterized
transformation. For example, Yang et al. [2019] generate point clouds
from a standard 3D Gaussian prior based on continuous normalizing
flows. Klokov et al. [2020] relieve the computation by formulating
a model using discrete normalizing flows with affine coupling lay-
ers [Dinh et al. 2016]. To better characterize the data distribution,
Kim et al. [2020] propose to learn a conditional distribution of the
perturbed training shapes. Cai et al. [2020] model the gradient of
the log-density field of shapes and generate point clouds by moving
the sampled points towards the high-likelihood regions.
While substantial progress has been made, the invertibility con-

straint in flow-based approach unavoidably limits the representation
capability of themodels. Also, the learned parameterized transforma-
tion can be regarded as a rough estimation of the averaged training
data distribution, so the generated point samples tend to be blurry
and noisy, as we shall show later in Section 6.
GAN-based generative approach explores adversarial learning to

train the shape generation model with the help of a discriminator.
Achlioptas et al. [2018] introduce the first set of deep generative
models to produce point clouds from a Gaussian noise vector, in-
cluding an r-GAN that operates on a raw point cloud input and
an l-GAN that operates on the bottleneck latent variables of a pre-
trained autoencoder. To overcome the redundancy and structural
irregularity of point samples, Ramasinghe et al. [2019] propose
Spectral-GANs to synthesize shapes using a spherical-harmonics-
based representation. Shu et al. [2019] propose tree-GAN to perform
graph convolutions in a tree and Gal et al. [2020] recently extend it
into a multi-rooted version. Hui et al. [2020] design a progressive
deconvolution network to generate 3D point clouds, while Arshad et
al. [2020] create a conditional generative adversarial network to
produce dense colored point clouds in a progressive manner.

Compared with the above GAN-based approaches, which attempt
to synthesize point clouds from only a single latent code, we incor-
porate a fixed prior shape to guide the generative process in the form
of a disentanglement model. Our model not only produces high-
quality outputs with fine details but also promotes controllability
for structure-aware shape generation and manipulation.
Other 3D representations such as voxel grid [Smith and Meger

2017; Wu et al. 2016], implicit function [Chen and Zhang 2019; Deng
et al. 2021], and deformable mesh [Groueix et al. 2018; Sinha et al.
2017; Wang et al. 2018] are also explored for shape generation in
recent years. Voxels are natural extensions of image pixels, allowing
state-of-the-art techniques to migrate from image-space processing
to 3D shape processing. However, 3D voxel grids suffer from large
memory consumption and low-resolution representation, so the
generated shapes contain only coarse structures but not fine de-
tails. Implicit-function-based methods [Mescheder et al. 2019; Park

et al. 2019] are flexible but computationally expensive, since a large
amount of points (e.g., 1283) must be sampled to get a surface from
the representation, leading to a huge computational resource de-
mand. Mesh-based methods, such as Pixel2Mesh [Wang et al. 2018],
learn to deform a surface template to form the target shape given an
input image. It is, however, hard to generate and interpolate shapes
with arbitrary (and different) genus. Also, the reconstruction is con-
ditional, meaning that it requires reference images and ground-truth
3D shapes, instead of being unconditional as in SP-GAN.
Using points for shape generation has several advantages. First,

points are a generic representation for 3D shapes, without con-
straining the topologies and genus. Also, points are easy to use for
shape manipulation and interpolation. Further, points are naturally
acquired by scanning without tedious post-processing.
Contemporarily, Deng et al. [2021] propose a deformed implicit

field representation for modeling dense correspondence among
shapes. It learns an implicit-field-based template for each category
and deforms the template towards each given shape to build the
shape correspondence explicitly. In SP-GAN, we adopt a general
“sphere prior” to enable high-quality shape synthesis, in which the
dense correspondence is embedded implicitly and automatically
via our novel design. Similarly, we noticed that P2P-Net [Yin et al.
2018] attaches an independent noise vector to each point feature for
providing more freedom to the displacements of individual points.
Differently, we attach noise latent code to each sphere point for
providing local details and the point relations together define the
global structure of the generated shapes.

3 OVERVIEW
The basic model of SP-GAN is illustrated in Figure 2, with shapes
represented as point clouds like the previous works we discussed.
In SP-GAN, the generator consumes two decoupled inputs: a global
priorS, which contains the 3D coordinates ofN points uniformly on
a unit sphere, and a local prior z, which is a d-dimensional random
latent vector, with each element randomly sampled from a standard
normal distribution. Very importantly, we pack one latent vector z
with each point in S to form the prior latent matrix as the generator
input; see again Figure 2. During the training, we use the generator
to synthesize point cloud P ∈ RN×3 from S and z; besides, we
sample another point cloud P̂ ∈ RN×3 from shape in a given 3D
repository. So, when we train SP-GAN, the discriminator should
learn to differentiate P and P̂, while the generator should learn to
produce P that looks like {P̂} from the 3D repository.

During the testing, we randomize a latent code and pack it with
sphere S into a prior latent matrix, and feed it to the trained gener-
ator to produce a new shape; see Pa in Figure 3(a). Thanks to the
sphere proxy, training SP-GAN creates an implicit association be-
tween points in S and points in the generated shape. This is a dense
point-wise correspondence, as illustrated by the smoothly-varying
point colors on the sphere and on the generated shape shown in
Figure 3(a). Also, this dense correspondence extends across all the
shapes produced from the generator; see the colors of the points
in generated shapes Pb and Pc in Figure 3(b). With this important
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Fig. 3. SP-GAN establishes a dense correspondence implicitly between
sphere S and all the generated shapes, with sphere S as a proxy. By this
model, we can modify or interpolate specific latent code in the prior latent
matrix, e.g., for part editing (a) and part-wise shape interpolation (b).

property, SP-GAN facilitates various forms of structure- and part-
aware shape generation and manipulation. Below, we first describe
two basic cases and more can be found later in Section 5:

• Part editing. The latent code associated with each point in
sphereS is a local prior. If we change the latent code for some
of the points, we can make local changes on the associated
part in the generated shape. Figure 3(a) shows an example,
in which we modify the latent code of the points associated
with the chair’s back (in blue) from za to za′ . By then, the
generator produces a new chair Pa′ , whose back follows za′
and other parts are slightly adjusted for compatibility with
the newly-modified back.

• Part-wise interpolation. Further, the dense correspondence
enables us to interpolate between the latent code of differ-
ent generated shapes to morph shapes in part-wise fashion.
This manipulation cannot be achieved by any existing uncon-
ditional generative models for 3D point clouds. Figure 3(b)
shows an example, in which we interpolate the latent code

associated with the chair’s lower part (marked as blue) be-
tween zb and zc by setting different interpolation weights.
With this change, the generator produces a set of new chairs,
in which their lower parts morph from Pb to Pc .

4 SP-GAN
In this section, we first present the architecture design of the gener-
ator and discriminator networks in SP-GAN, and then present the
training and implementation details.

4.1 Generator
Figure 4 shows the architecture of the generator in SP-GAN, which
produces point cloud P ∈ RN×3 from sphere S and a prior latent
matrix. Inside the generator, z introduces diverse local styles and
fine details into point features, whereas S serves as a prior shape for
feature extraction and guides the generative process. Particularly,
S also allows us to employ graph-related convolutions with spatial
correlation for feature extraction. This is very different from existing
works on 3D point cloud generation, which take only a single latent
code as input; hence, existing models can only use fully-connected
layers at early stages and require relatively large amount of learnable
parameters, yet having limited expressiveness.
To elaborate on how our generator works, let’s start with the

bottom branch shown in Figure 4. First, the generator employs a
graph attention module (to be detailed soon) to extract a point-wise
feature map FG1 ∈ RN×64 from S. Now, to generate 3D shapes,
an important question is how to insert the structure variations
and local styles brought from latent code z into feature map FG1 .
Inspired by style transfer [Dumoulin et al. 2017; Karras et al. 2019],
we propose to use an adaptive instance normalization layer (the left
orange box in Figure 4) by modulating the mean and variance of
the feature vectors in FG1 . Specifically, as shown in the top branch,
we employ a non-linear feature embedding, which is implemented
using multi-layer perceptrons (MLPs), to transform the prior latent
matrix into a high-level feature map FE ∈ RN×128. Then, we use
a style embedding (the left blue box in Figure 4), which is also
implemented using MLPs, to specialize FE into styles Y1 = (Ys1,Y

b
1 ),

where Ys1 ∈ RN×64 and Yb1 ∈ RN×64 control the scale and bias,
respectively, when normalizing each point feature vector in FG1 .
Thus, the adaptive instance normalization operation becomes

FA1 (i) = Ys1(i) ·
FG1 (i) − µ(FG1 (i))

σ (FG1 (i))
+ Yb1 (i), i ∈ [1, ...,N ], (1)

where FG1 (i) is the i-th point feature vector in FG1 , FA1 (i) is the
corresponding feature vector after the normalization, and µ(·) and
σ (·) compute the mean and standard deviation across the spatial
axes of its argument, which is a feature vector. In general, Eq. (1)
allows us to encode the learned per-point style, i.e., (Ys1(i),Y

b
1 (i)),

into the associated embedded feature vector FG1 (i), so that the final
adjusted FA1 contains richer local details.

To further enrich the feature embedding, we pass FA1 to another
set of graph attention module and adaptive instance normalization
to obtain FG2 and FA2 , respectively. As shown on the right side of Fig-
ure 4, we further regress the output 3D point cloud P by following
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Fig. 4. Architecture of the generator in SP-GAN. With the prior latent matrix as input, the generator first feeds sphere points S to a graph attention module
(green box; see Figure 5) to extract the point-wise feature map FG1 . On the top branch, we use a nonlinear feature embedding (red box) to extract local style
features F E from the prior latent matrix. Then, to fuse the local styles in F E with the spatial features in FG1 , we propose to embed local styles Y1 from F E

(blue box) and then use adaptive instance normalization (orange box) to produce FA1 with richer local details. We repeat the process with another round of
style embedding and normalization, and then follow PointNet [Qi et al. 2017a] to reconstruct point cloud P from the embedded feature map FA2 .

Fig. 5. Architecture of the graph attention module. Besides adopting the
basic module (light yellow) in DGCNN [Wang et al. 2019], instead of equally
treating the neighbor features, we regress weightsW to obtain the weighted
feature map FW by considering the relations among the K point neighbors.

PointNet [Qi et al. 2017a] to reconstruct the 3D coordinates, i.e., by
concatenating FA2 with the duplicated global feature vectors. Please
refer to [Qi et al. 2017a] for the details.

Graph attention module. Next, we elaborate on the design of the
graph attention module; see Figure 5 for an illustration of its archi-
tecture. Here, we adopt the basic module (marked in light yellow)
from DGCNN [Wang et al. 2019] and make our adjustments to fur-
ther account for the relationships among the K neighbors in the
feature space. Instead of taking the neighboring features equally, we
regress weightsW ∈ RN×K×C (orange box) and employ point-wise
multiplication to obtain the weighted neighbouring feature map
FW . Lastly, the output N ×C feature map is obtained by applying a
convolution of a kernel size of 1 × K to FW .

4.2 Discriminator
Figure 6 shows the architecture of the discriminator in SP-GAN. Its
input is either a point cloud P produced by the generator or a point
cloud P̂ sampled from shape in a given 3D repository. From the N
points in P or P̂, a conventional discriminator would learn a 1 ×C
global feature vector for the whole shape and predict a single score
that indicates the source of the point cloud. Considering that the
“realism” of an input can be explored by looking into its local details,
as inspired by [Schonfeld et al. 2020], we extend the conventional
discriminator to additionally perform classifications on a per-point
basis, i.e., by predicting a score for each point in the input.

Fig. 6. Architecture of the discriminator in SP-GAN. To classify the input
point cloud as being produced by the generator or sampled from a given
3D repository, we predict not only a per-shape score (top branch) but also
per-point scores (bottom branch) to encourage fine-grained analysis.

As shown in Figure 6, after we extract point features from the
input, we use the top branch to predict a per-shape score and the
bottom branch to predict per-point scores. In this way, the discrim-
inator can effectively regularize both global and local variations
in the input point cloud. Correspondingly, we can then encourage
the generator to focus on both global structures and local details,
such that it can better synthesize point clouds to fool this more
powerful discriminator. Note that in our implementation, we adopt
PointNet [Qi et al. 2017a] as the backbone for the feature extraction,
which is the violet box shown in Figure 6.

4.3 Training and Implementation details
Loss functions. SP-GAN can be trained end-to-end using one loss

for generator G and another loss for discriminator D. In this work,
we design the two losses based on the least squares loss [Mao et al.
2017], which is originally formulated by minimizing the following
competing objectives in an alternating manner:

LG =
1
2
[D(P) − 1]2 (2)

and LD =
1
2
[(D(P) − 0)2 + (D(P̂) − 1)2], (3)

where D(P) and D(P̂) are the confidence values predicted by the
discriminator on P and P̂, respectively, and LG and LD are the
loss for training the generator and discriminator, respectively.

Since our discriminator outputs two types of predictions, i.e., per-
shape score and per-point scores. Hence, wemodel the discriminator
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loss LD as a summation of shape loss Lshape
D and point loss Lpoint

D :

LD = L
shape
D + λL

point
D , (4)

L
shape
D =

1
2
[(D(P) − 0)2 + (D(P̂) − 1)2], (5)

L
point
D =

1
2N

N∑
i=1

[(D(pi ) − 0)2 + (D(p̂i ) − 1)2]. (6)

where λ is a balance parameter; pi and p̂i are the i-th point in P and
P̂, respectively; andLpoint

D is computed by averaging the predictions
of all the points.

Correspondingly, the objective for training the generator becomes

LG =
1
2
[D(P) − 1]2 + β

1
2N

N∑
i=1

[D(pi ) − 1]2, (7)

where β is a weight to balance the terms.

Network training. Overall, we train SP-GAN by alternatively op-
timizing the discriminator using Eq. (4) and the generator using
Eq. (7). Note also that, we keep sphere S unchanged during the
training and randomly sample a latent code z from a standard nor-
mal distribution in each of the training iterations.

Network inference. During the generation phase, we only need to
use the trained generator to produce a point cloud, while keeping
the same S as in the training. With different randomly-sampled z
as inputs, the generator can produce diverse point cloud outputs.

Implementation details. We implement our framework using Py-
Torch and train it on a single NVidia Titan Xp GPU using the Adam
optimizer. We use a learning rate of 10−4 to train both the generator
and discriminator networks, and follow the alternative training strat-
egy in [Goodfellow et al. 2014] to train each of them for 300 epochs.
In both networks, we use LeakyReLU as a nonlinearity activation
function. In the last layer of the generator, we use tanh as the acti-
vation function. Also, we set K=20 to extract point neighborhood.
Our code is available for download on GitHub1.

5 SHAPE GENERATION AND MANIPULATION
This section presents various forms of shape generation, manipula-
tion, and analysis that are enabled by SP-GAN.

5.1 Shape Generation
Galleries of generated shapes. Figure 9 showcases varieties of

shapes generated by SP-GAN in the form of point clouds, from
which we can further reconstruct surfaces using [Liu et al. 2021] (see
bottom row). Besides the commonly-used ShapeNet dataset [Chang
et al. 2015], we adopted SMPL [Loper et al. 2015] (human body
shapes) and SMAL [Zuffi et al. 2017] (animal shapes) as our training
data. In detail, on the 3D mesh of each shape, we uniformly sampled
N points (N = 2, 048 by default) and normalized the points to fit a
unit ball. Like the existing generative models [Achlioptas et al. 2018;
Hui et al. 2020; Shu et al. 2019], we trained our network on each
category separately. Note that we regard different kinds of animals
as individual category. During the generation phase, we randomly
1https://github.com/liruihui/SP-GAN

Fig. 7. Visualizing the dense correspondence between the sphere proxy and
the generated shapes. Note that same color is assigned to associated points
on the sphere proxy and on the generated shapes.

Fig. 8. Our interface for interactive shape generation and manipulation.
Given a generated shape (a), one can use a lasso tool to select specific parts
in the shape (b) and preview the manipulation result (c) in real-time.

sample a latent code from a standard Gaussian distribution and take
it to SP-GAN to generate the associated shape (point cloud). As
shown in Figure 9, our generated shapes exhibit fine details with
less noise and also cover a rich variety of global and local structures.

Visualization of the dense correspondence. To visualize the learned
implicit dense correspondence between the points on the sphere
proxy S and the points in the generated shapes, we use same color
to render associated points on the sphere and on the generated
shapes; see Figure 7 for examples. Checking the point colors across
sphere and generated shapes, we can see that different regions of
the sphere correspond to different local parts in the shapes. For
example, the lower left part of the sphere corresponds to the legs of
the chairs. Also, in each category, the same semantic part of different
objects, e.g., the back of all chairs and the legs of all animals, re-
ceive similar colors. Particularly, as shown in the bottom row, these
animals have different poses, yet our model can successfully estab-
lish a dense correspondence between the semantically-associated
parts. This correspondence property is crucial to enable various
structure-aware shape manipulations, as we shall show soon.

5.2 Single-shape Part Editing
With a dense correspondence established between the sphere proxy
and each generated shape, we can easily locate “local” latent code
associated with specific parts in a shape. As illustrated in Figure 3(a),
we can perform part editing by re-sampling a new random latent
code to replace the existing latent code associated with each specific
part in the shape; by then, we can generate a new shape that is
similar to the original one but with a different local part.
To facilitate part selection, we built the interactive interface

shown in Figure 8, in which one can use a lasso tool to interac-
tively select specific parts in a generated shape. The blue points
in (b) indicate the lasso selection. Then, one can click a button to
regenerate the shape with a real-time preview (c). Please watch our
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Fig. 9. Galleries showcasing shapes of various categories generated by SP-GAN, and the rich global structures and fine details exhibited in the shapes.
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Fig. 10. Part editing examples. Given a generated shape (left), we can select
specific parts (blue) and modify their associated latent codes to produce
new shapes with different styles (right).

Fig. 11. Shape-wise interpolation between the source (left) and target (right-
most) in each row. Note the smooth transition from left to right, including
the two human bodies with different poses (top row). Also, the generated
intermediate shapes are high-quality with fine details and little noise.

supplemental video. Figure 10 shows more part-zediting examples.
On the left of each row is an initial generated shape without any
manipulation. By selecting specific parts (blue) in the shape, we can
randomly modify the associated latent codes and produce the new
shapes shown on the right. We can observe that, after modifying
a portion of all the latent codes, the generator will synthesize new
shapes with different local styles on the user-marked blue parts,
while other object parts (yellow) only exhibit small changes for
compatibility with the newly-modified parts.

5.3 Shape Interpolation
Shape-wise interpolation. Like existing models [Achlioptas et al.

2018; Shu et al. 2019; Yang et al. 2019], we can also linearly in-
terpolate between shapes of different appearance using SP-GAN.
Specifically, given two different generated shapes Pa (source) and
Pb (target) with their associated latent codes za and zb , respectively,

Fig. 12. Interpolating only the latent code associated with the user-selected
parts (non-yellow) between the source (left) and target (right) in each row.
Note the smooth and part-based transition, as well as the quality of the
generated point samples in the interpolated shapes.

the interpolated shape Pc can be easily generated by feeding the
interpolated latent code zc = (1 − α) · za + α · zb into our generator,
where α is the interpolation weight ranged from zero to one.

From the interpolation results shown in Figure 11, we can observe
that as α increases, SP-GAN enables a smooth transition from the
source to the target. See particularly the top row, the source and
target reprensent the same human body of two different poses; the
interpolation is able to produce rather smooth transitions between
the two poses. Distinctively, just like the source and target, the
intermediate (generated) shapes also contain fine details with little
noise; this is very challenging to achieve, as many existing works
easily introduce noise to the interpolated point clouds.

Part-wise interpolation. As illustrated in Figure 3(b), thanks to
the dense correspondence established across the generated shapes,
we can interpolate the latent code associated with specific part in a
shape, instead of simply interpolating the whole shape.
Figure 12 shows three sets of part-wise interpolation results,

where we interpolate only the latent codes associated with the user-
selected points (non-yellow) between the source and target shapes.
Here, we render the user-selected points using a color gradient from
purple to blue to reveal the interpolation progress. From the results
shown in the figure, we can observe that the interpolation happens
mainly on the user-selected points, yet the remaining points (yellow)
may exhibit small changes for the integrity of the generated shape.
For example, in the first row, we select the bracket and base of the
source and target lamps for interpolation, so the lamp’s shape does
not change significantly, while the style of the bracket and base
gradually morphs from that of the source to the target.
Figure 13 further shows a two-dimensional part-wise interpola-

tion example. Along each row, we fix the part being interpolated
(non-yellow) and gradually increase the interpolation weight α .
Taking the first row as an example, we only selected the legs for in-
terpolation. As α increases, the legs of the source (top-left) gradually
becomes more and more similar to the legs of the target (bottom-
right); see also the color gradient from purple to blue. On the other
hand, along each column (top to bottom), we fix α but gradually
enlarge the selected region. Taking the right-most column as an
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Fig. 13. A two-dimensional part-wise interpolation example. Along each
row (left to right), we interpolate the user-selected part, whereas along each
column (top to bottom), we gradually enlarge the user-selected region. From
the results shown above, we can see the smooth transition and the quality
of the interpolated shapes produced by SP-GAN.

Fig. 14. Two multi-shape part composition examples (left and right), in
which the non-yellow parts in the top row are selected in the composition.

example, in which α = 1, we can observe that as the selected region
(blue) increases, the source gradually deforms further to become
the target. Again, we would like to highlight that shapes generated
by SP-GAN have fine details and little noise, including also the
interpolated ones; see again Figures 12 and 13.

5.4 Multi-shape Part Composition
The implicit dense correspondence across multiple generated shapes
also facilitates the composition of parts frommultiple shapes. Specif-
ically, given different semantic parts (e.g., chair’s back, legs, etc.) and
their associated latent codes from different shapes, we can pack a
new prior latent matrix with S and feed the matrix to our generator
to produce new shapes. In this way, the synthesized shape would
integrate different local styles from the parent shapes.

Figure 14 presents two examples, where the non-yellow parts in
the shapes (top row) are selected for composition. We can observe
that, for the two re-generated shapes (bottom row), their local parts
generally inherit the styles of the parent shapes.

Fig. 15. Top: co-segmentation results relying on the dense correspondence
across different generated shapes, where only the top-left object (marked
over a gray background) is manually segmented and the others are auto-
matically co-segmented. Note that each column represents a different kind
of animal. Bottom row: the associated human-labeled results.

5.5 Part Co-Segmentation
Another benefit brought by the implicit dense correspondence is
that SP-GAN enables part co-segmentation on a set of 3D shapes, i.e.,
simultaneous segmentation of shapes into semantically-consistent
parts. To do so, we only need to manually segment one of the shapes
in the set, then the point-wise labels of the remaining shapes could
be simultaneously obtained through the dense correspondence.

Figure 15 showcases an interesting co-segmentation example, in
which only the top-left shape was manually segmented and all other
shapes in the figure are automatically co-segmented.We can observe
that, the learned implicit correspondence produced by SP-GAN can
successfully facilitate part co-segmentation across shapes, even for
shapes with different poses and local part orientations, e.g., see the
tails of the animals in the figure. Particularly, different columns
actually feature different types of animals, yet our method can still
achieve high robustness in co-segmenting these shapes.

Since generative tasks have no ground truths, we cannot directly
evaluate the dense correspondence between the generated results.
So, we resort to comparing our shape co-segmentation results with
human-labeled results. Specifically, we manually label parts in 100
generated shapes of SMAL and calculate the mIoU between the
co-segmentation results and human labels. The results are very
positive (87.7%). Also, we conducted a user studywith 10 participants
(who are graduate students aged 23 to 28), to compare the 1-shot
co-segmented sample and human-labeled sample; the preference
statistics of our result is 48.5%, which is close to a random selection.
Figure 15 (bottom) shows some of the human-labeled results.

6 EVALUATION AND DISCUSSION

6.1 Comparing with Other Methods
We evaluate the shape generation capability of our method against
five state-of-the-art generative models, including r-GAN [Achliop-
tas et al. 2018], tree-GAN [Shu et al. 2019], PointFlow [Yang et al.
2019], PDGN [Hui et al. 2020], and ShapeGF [Cai et al. 2020]. Here,
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Table 1. Quantitative comparison of the generated shapes produced by SP-GAN and five state-of-the-art methods, i.e., r-GAN [Achlioptas et al. 2018],
tree-GAN [Shu et al. 2019], PointFlow [Yang et al. 2019], PDGN [Hui et al. 2020], and ShapeGF [Cai et al. 2020]. We follow the same settings to conduct this
experiment as in the state-of-the-art methods. From the table, we can see that the generated shapes produced by our method have the best quality (lowest
MMD, largest COV, and lowest FPD) for both the Airplane and Chair datasets. Also, our method has the lowest complexity (fewest model parameters) and the
highest training efficiency (shortest model training time). The unit of MMD is 10−3.

Categories Metrics Methods
r-GAN tree-GAN PointFlow PDGN ShapeGF SP-GAN

Airplane
MMD(↓) 3.81 4.32 3.68 3.27 3.72 1.95
COV(%,↑) 42.17 39.37 44.98 45.68 46.79 50.50
FPD(↓) 3.54 2.98 2.01 1.84 1.61 0.96

Chair
MMD(↓) 18.18 16.14 15.02 15.56 14.81 8.24
COV(%,↑) 38.52 39.37 44.98 45.89 47.79 52.10
FPD(↓) 5.28 4.44 3.83 3.77 3.52 2.13

Parameter size (M) 7.22 40.69 1.61 12.01 5.23 1.01
Training time (Days) 0.9 4.1 2.5 2.3 1.2 0.5

Fig. 16. Visual comparisons with state-of-the-art methods. Clearly, the
point clouds generated by our method (e) exhibit more fine details and less
noise, while other methods (a)-(d) tend to generate noisy point samples.

we follow the same experimental setup as the above works to con-
duct this experiment. That is, we trained our SP-GAN model also
on the Chair (and Airplane) shapes in ShapeNet [Chang et al. 2015],
randomly generated 1,000 shapes for each category, and then evalu-
ated the generated shapes using the same set of metrics as in the
previous works (details to be provided below). Also, for the five
state-of-the-art models being compared, we directly employ their
publicly-released trained network models to generate shapes.

Evaluation metrics. Different from supervised tasks, generation
tasks have no explicit ground truths for evaluations. Hence, we di-
rectly follow the evaluation metrics in the existing works [Achliop-
tas et al. 2018; Hui et al. 2020; Shu et al. 2019]: (i) MinimumMatching
Distance (MMD) measures how close the set of generated shapes
is relative to the shapes in the given 3D repository {P̂}, so MMD
indicates the fidelity of the generated shapes relative to {P̂}. (ii)
Coverage (COV) measures the fraction of shapes in {P̂} that can
be matched (as a nearest shape) with at least one generated shape,

so COV indicates how well the generated shapes cover the shapes
in {P̂}; and (iii) Fréchet Point Cloud Distance (FPD) measures the
2-Wasserstein distance in the feature space between the generated
shapes and the shapes in {P̂}, where we employ a pre-trained clas-
sification model, i.e., DGCNN [Wang et al. 2019], for the feature
extraction, so FPD indicates the distribution similarity between the
generated shapes and {P̂}. For details of these metrics, readers may
refer to [Achlioptas et al. 2018; Hui et al. 2020; Shu et al. 2019].
Although these metrics are not absolutely precise, they still reflect
the quality of the generated shapes in various aspects. Overall, a
good method should have a low MMD, high COV, and low FPD.

Quantitative evaluation. Table 1 reports the quantitative compar-
ison results between different methods. For a fair comparison of
training time, all methods (including ours) were run on the same
desktop computer with the same GPU, and for the five comparison
methods, we used code from their project websites. From the results
shown in the table, we can see that SP-GAN outperforms all the
other methods consistently on the three evaluation metrics for both
datasets by a large margin. The low MMD and FPD suggest that our
generated shapes have high fidelity compared with the shapes in
the 3D repository in both the spatial and feature space, and the high
COV suggests that our generated shapes have a good coverage of
the shapes in the 3D repository. Also, our network has the fewest
learnable parameters and requires much less time to train.

Qualitative evaluation. Figure 16 shows some visual comparison
results. Here, we pick a random shape generated by our method and
use the Chamfer distance to retrieve the nearest shapes generated
by each of the other comparison methods. From these results, we
can see that the point clouds generated by our method (e) clearly
exhibit more fine details and less noise, while other methods (a)-(d)
tend to generate noisy point samples.

6.2 Ablation Study
To evaluate the effectiveness of the major components in our frame-
work, we conducted an ablation study by simplifying our full pipeline
for four cases: (i) replace the graph attention module (GAM) with
the original EdgeConv [Wang et al. 2019]; (ii) remove the adaptive
instance normalization (AdaIN) and directly take the prior latent
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Table 2. Comparing the generation performance of our full pipeline with
various simplified cases in the ablation study. The unit of MMD is 10−3.

Model GAM AdaIN PPS Sphere MMD(↓) COV(%,↑) FPD(↓)
(i) ✓ ✓ ✓ 10.38 48.24 2.88
(ii) ✓ ✓ ✓ 9.54 49.72 2.66
(iii) ✓ ✓ ✓ 9.81 50.63 2.52
(iv) ✓ ✓ ✓ 8.69 51.22 2.29
Full ✓ ✓ ✓ ✓ 8.24 52.10 2.13

matrix as the only input (see Figure 4); (iii) remove per-point score
(PPS) (see Figure 6); and (iv) replace the sphere with a unit cube. In
each case, we re-trained the network and tested the performance
on the Chair category. Table 2 summarizes the results of (i) to (iv),
demonstrating that our full pipeline (bottom row) performs the best
and removing any component reduces the overall performance, thus
revealing that each component contributes.

6.3 Shape Diversity Analysis
Further, to show that our generator is able to synthesize diverse
shapes with fine details and it does not simply memorize the latent
code of the shapes in the training set {P̂}, we conducted a shape
retrieval experiment. Specifically, we take random shapes produced
by our generator to query the shapes in the training set, i.e., we
find the shapes in training set {P̂} that have the smallest Chamfer
distance with each generated shape. Figure 17 shows some of the
shape retrieval results. Compared with the top-five similar shapes
retrieved from {P̂}, we can see that our generated shapes have
similar overall structures yet different local fine details. Particularly,
the points in our generated shapes have less noise (compared with
those produced by other unsupervised generative models), just like
the sampled ones from the training set.

6.4 Discussion on Limitations
Our approach still has several limitations. (i) SP-GAN is able to learn
in an unsupervised manner but it still requires a large amount of
shapes for training. Hence, for shapes with limited training samples
or with complex or thin structures, the generated shapes may still
be blurry (or noisy); see Figure 18 (left). (ii) Though the point cloud
representation is flexible for shape generation and manipulation,
we can not directly produce surface or topological information and
require a post processing to reconstruct the surface. So, distorted
edges and holes could be produced on the reconstructed surface;
see Figure 18 (right). In the future, we plan to explore point normals
in the generation process to enhance the mesh reconstruction. (iii)
Lastly, parts relations are not explicitly or clearly represented in our
model, even it embeds an implicit correspondence; looking at the
human-labeled samples in Figure 14, we may incorporate certain
parts priors into the network to enrich the generation.

7 CONCLUSION AND FUTURE WORK
This work presents SP-GAN, a new generative model for direct gen-
eration of 3D shapes represented as point clouds. By formulating the
generator input using the prior latent matrix, we decouple the input
into a global prior (sphere points) and a local prior (random latent
code), and formulate the generator network with style embedding

Fig. 17. Shape diversity analysis. We take shapes (left) randomly produced
by our generator to query the shapes in the training set (the given 3D
repository). The top-five most similar shapes for each case are presented on
the right, showing that our generated shapes look similar to the retrieved
shapes in overall structure, yet they have different local fine details.

Fig. 18. Failure cases. Left: complex and thin structures may be blurry. Right:
distorted edges and holes could be produced on the reconstructed surface.

and adaptive instance normalization to bring local styles from the
random latent code into the point features of the sphere points.
This disentanglement scheme articulates the 3D shape generation
task as a global shape modeling and a local structure regulation,
and enables the generative process to start from a shared global
initialization, yet accommodating the spatial variations.

Very importantly, distinctive from existing works on direct point
cloud generation, our new design introduces structure controllabil-
ity into the generative process through the implicit dense correspon-
dence. So, we can modify or interpolate latent codes in a shape-wise
or part-wise manner, and enable various forms of structure-aware
shape manipulations that cannot be achieved by previous works
on direct point cloud generation. Both quantitative and qualitative
experimental results demonstrate that SP-GAN is able to generate
diverse, new, and realistic shapes that exhibit finer details and less
noise, beyond the generation capability of the previous works.
In the future, we plan to extend our current design by consid-

ering different forms of user feedbacks and to enable user-guided
automatic shape generation. Also, we would like to explore the
possibility of generating 3D shapes represented in other forms, such
as polygonal meshes and implicit surfaces.
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